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Extension of the variational formulation of the Onsager-Machlup theory of fluctuations
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We considered spontaneous fluctuations of thermodynamic variables in an adiabatically insulated
system where nonlinear irreversible processes can take place. We introduced an extended definition
of the Onsager-Machlup functional. In terms of this functional, a conditional probability density
function was constructed, which describes, generally, non-Gaussian fluctuations. A sufficiently com-
mon form of phenomenological laws governing irreversible processes was found. In the case of linear
laws, the proposed extention leads to the Onsager-Machlup results.

PACS number(s): 05.45.4+b

I. INTRODUCTION

The formalism of the linear irreversible thermodynam-
ics, which describes irreversible processes and related
spontaneous fluctuations of the thermodynamic variables
characterizing the deviations of a fluctuating system from
the equilibrium state, has been developed in the classical
Onsager works [1,2]. The central part of this formalism
is the reciprocity relations, which express the symmetry
of the matrix of the coeflicients of the phenomenological
equations for the thermodynamic variables. The reci-
procity relations, which are proved on the basis of the
microscopic reversibility assumption, are limitations for
the linear phenomenological equations.

Using the variational approach, Onsager and Machlup
have established a more profound connection between
the theory of irreversible processes and fluctuations of
the thermodynamic variables [3,4]. For this purpose, on
the basis of the stochastic model, the so-called Onsager-
Machlup (OM) function and the corresponding func-
tional have been introduced. The minimum value of this
functional determines the transition probability of the
system from one state to another. As a result, the condi-
tional probability density function of fluctuations of the
thermodynamic variables has been obtained.

However, all these results have been obtained in the
cases of linear irreversible processes and Gaussian fluctu-
ations of the thermodynamic variables. In this work, we
propose an extension of the variational aspects of the
Onsager-Machlup theory of fluctuations. We consider
nonlinear irreversible processes and related non-Gaussian
fluctuations. Using the definition of dissipative function
in the case where the phenomenological equations are
generally nonlinear [5], we introduce an extended OM
function and the corresponding functional. We obtain
the extended conditional probability density function of
fluctuations of the thermodynamic variables and show
that, in the linear regime, this function is reduced to
that obtained earlier by Onsager and Machlup.
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In this work, we consider an extension only of the vari-
ational formulation of the OM theory. The other aspects,
for example, the consistency of this extended version with
the description of fluctuations in terms of the Fokker-
Planck equation or stochastic differential equations [6],
require special investigations.

Following the work of [4], we represent the entropy
as a function of the thermodynamic variables and their
time derivatives. As a result, we take the inertial effects
into account. We consider the thermodynamic variables
that are even functions of the molecular variables (in the
absence of a magnetic field). Based on the microscopic
reversibility assumption, we establish the limitations for
nonlinear phenomenological equations. We show that, in
the specific case of linear irreversible processes, these lim-
itations are reduced to the Onsager reciprocity relations.

II. LINEAR THEORY

Let us consider an adiabatically insulated system, dis-
placed from the equilibrium state, that returns to the
state of thermodynamic equilibrium. Following Onsager
and Machlup, we introduce N variables ¢;, that express
the deviation of the system from the equilibrium state
and vanish in this state. We consider that the entropy of
the system S depends on the variables ¢; and their time
derivatives ¢;. In the equilibrium state at ¢; = 0 and
¢; = 0, the entropy attains the maximum value Sp. Let
us introduce an entropy change z = So —- S. Then, we
can write
@) 2 0

Z=Z(<P1,---,<PN;¢17---

z = 0 in the equilibrium state.

In the linear Onsager-Machlup theory, the entropy
change is a sum of the positive definite quadratic forms
of the variables ¢; and ¢;,

1 1 ..
z=3 > sijpips + 3 D mii i (1)
i iri

Thermodynamic forces are linear functions of ¢; and ¢;,
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0z d Oz .
Xi = ‘5‘;; + Ea—(pz = ;si_v“f’j + Xj:mij‘Pj,
i=1,...,N. (2)
In this case, the time derivative of entropy change can be
represented by the bilinear form

z= me <o. 3)

Irreversible processes in the neighborhood of the equi-
librium state are described by the linear phenomenolog-
ical equations

_(‘O’ZZL’LJXJ or —ZR‘I.]‘»D]:XH t=1,...,N,
J J

(4)
where the phenomenological coefficients form reciprocal
matrices and obey the Onsager reciprocity relations

Lij = Lji or Ri]‘ = RJ, (5)

The evidence of reciprocity relations is based on the
Boltzmann-Planck postulate, the microscopic reversibil-
ity assumption, and the hypothesis that the fluctuat-
ing variables ¢;(t) obey, on the average, the same phe-
nomenological equations (4).

According to the Boltzmann-Planck postu-
late, the function z determines the probability density
P(P1,-- -, N; P1,---,9n) of that, at some instant, the
variables take the values from ¢; to ¢; + dy; and from
$i to ; + dp;, namely,

. . V4
p(sola"'aQONa<P17"'a()0N)O(exp<_E)a (6)

where kp is the Boltzmann constant.
Based on this linear formalism, Onsager and Machlup
have constructed the conditional probability density

function p(T'(M, ¢y; F(z),tz) of the transition of the system
from the state I'1) = (<p(11), cen, wg\}); <,b(1), cen ‘PS\}))

1
at the instant t; to the state I'® = ((pgz),...,go%);

¢§2),...,¢§3)) at the instant ¢;. For this purpose, on
the basis
of the dissipative function
¥ =Y Rij¢i;, (7)
%3

the OM function

L(P1y-+ 3PN X1y+- - XN) = ZRij¢i¢j + ZLinin
%, i,J
+2) xii 8)

and the corresponding functional

lor, ..

t2
= /; ZR"J‘@'% + Z Lijxixj +2 ZX-;@,’ dt
N i3 ij :
(9)

’¢N;¢11---7¢N]

have been constructed.

As Onsager and Machlup have shown, the conditional
probability density function p(F(l),tl;I‘(z),tz) is deter-
mined by the minimum value of functional (9) ¢min and
has the form

p(F(l),tl;F(z),tz) o exp (--1 ¢min> . (10)
4 kg

The minimum value of (9) is found from the equation

t2
5 = / §Ldt =0
t1

under the assumption that the variations of the variables
i, ; and their time derivatives are equal to zero in the
initial and final states I'*) and I'(?), which are equivalent
to the set of the generalized Euler-Lagrange equations

oL d ot
dt? 0p;  dt 9¢;

o
Op; B

0, i=1,...,N. (11)

One can show [3,4] that, in a specific case, when the
system passes from the equilibrium state T'Y) = 0 at
t; = —oo to some state I'?) = T" at t, = ¢, the value ¢min
is related to the entropy change in the following manner:

1 1 ¢
= bomin = = Ldt = z;
4¢m1n 4 ([_w )min zZ5

therefore, (10) is reduced to (6).
scribed, on the average, by

¢i = Lix; or > Rijp; =X
J J

This transition is de-

i=1,...,N,

which are obtained from (4) by changing the sign of .
We extend these results for the system in which, in a
general case, nonlinear irreversible processes and a non-
linear connection between the thermodynamic forces and
the state variables take place.

III. EXTENSION OF THE ONSAGER-MACHLUP
FUNCTION

Let us consider a general case in which the entropy
change has the form

1 ..
z=2o(p1,---,N) + Ezmij@i‘ﬁjv (12)
i,j
where 2zo(¢1,...,9N) > 0; zo(¢1,--.,on) = 0 only at

@1 =---=@n = 0. The second term on the right-hand
side of (12) is a positive definite quadratic form of ¢;.
The thermodynamic forces are determined similarly to

(2)

0z d 0z Ozo . .
P —_— = 2] iy —_—1,...,N.
Xi = 50t G5 = B +§j:mm i
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The phenomenological equations
versible processes have the form

describing irre-

where ¢ = (1, 0N)i $ = (B1er 6N
X:(Xl,"'aXN);fz(fl""va)andg:(gla'“agN)

are reciprocal vector functions. We assume that these
functions are odd functions of their variables in the ag-
gregate.

Let us introduce a dissipative function [5]

P(p) = Z $ig:(9), (15)

which coincides with (7) in the linear case. To deter-
mine the OM function in the general case, let us consider
first the linear one-dimensional case. Then, f(x) = Lx,

9(¢) = Ry, ¥(¢) = R¢?, and
L=Rp?*+ Lx? +2xp =4 — 1,

where = —Lx? — 2x¢. The function 7, as a function
of ¢, coincides with the equation of a tangent to the
graph of the function 1 = R¢? at the point ¢ = —Lx.
Therefore, we define an extended OM function also as
a difference between the dissipative function ¥ = ¢g(¥)
and the linear function n of ¢, which is an equation of
a tangent to the graph of the function ¢ at the point

o =—f(x):

L(pyx) =% —n
. o
=t —Ylp=j) P+ f s
Fx) — @+ F(X)] s 100
= ¢g(®) + A(x) F(x) + [AMx) + x]¢»
where
Og
(x (x) 9% oo

The similar definition in the multidimensional case leads
to the extended OM function in the form

£o0) === S {60:(8) + MOAR)

NG + xz-m}, (16)

where

M0 = S50 5 09;

‘l.

, i=1,...,N. (17)

e=—F(x)

In the multidimensional case, n = 7n($) is an equa-
tion of the tangent plane to the graph of the dissipative
function (15) at the point ¢ = —f(%). In the specific
case, when the phenomenological equations are linear,
the well-known definition of the OM function (8) follows
from (16) and (17), in which

Ai(f():Xi, t=1,...,N. (18)

It immediately follows from the definition of the ex-

tended Onsager-Machlup function that the solutions of

phenomenological equations (14) make this function van-
ish identically. It follows from (17) that, at any k =

1,...,N,
L 9fi(X)
— o\ 99; 0fi(x)

) N 89, Ofi(%)
= ; {f,(x); [8@- p=—Fx) Xk ] }

= ij(f()fsjk = fr(%), (19)

as f and g are reciprocal vector functions ( is the Kro-
necker delta). One can show that, in the nondegenerated
case, (17) follows from equality (19); i.e., these equalities
are characteristic for defining the functions A;(), if the

g;:) is not equal to zero. Using the extended

Jacobian (

OM function, let us consider a conditional probability
density function.

IV. CONDITIONAL PROBABILITY
DENSITY FUNCTION

Let us define a conditional probability density function
similarly to the linear case. Let us introduce a functional

t2
¢[§017"§0N7<P1,,¢N]=/ Edt’ (20)
138

where £ is an extended OM function (16). We consider
that, in the nonlinear case, the probability density func-
tion has the form (6) and the conditional probability den-
sity function p(I‘(l),tli; I‘(z),tg) is also determined by the
minimum value ¢min of functional (20):

e (21)

p(r(l)atl; F(Z)a tZ) X exp <_

where F' = F(¢min) is an increasing function of @min.
In the linear case, according to (10), F'(¢min) = %¢min.
Finding the minimum value ¢n,;, is reduced to solving
the set of the generalized Euler-Lagrange equations (11).

In the specific case, when an adiabatically insulated
system passes from the equilibrium state TV = 0 at
t; = —oo to some state I'®) =T at t, = ¢, the function

(F(l) t1;7® t5) must be reduced to the density func-
tion p(T'(¢)) of the form (6). It follows from this that the
solutions of the equations, which are obtained from (14)
by changing ¢t for —t

Yi = fz(x)y

must satisfy the set of the generalized Euler-Lagrange
equations (11).

It follows directly from the definition of the extended
OM function and relation (19) that the set of the Euler-
Lagrange equations (11) can be written in the form

9i(®) = xi, i=1,...,N, (22)
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d? . 1906 (X) + x5 9x
i 32 [0+ 0PGBI

d _ 89
T Ai(X) +xi + g:(® +Z<PJ e
, 1912 (%) +Xj] Oxk
- ¢i + fi(0)]— =0,
i=1,...,N. (23)
Let us determine when the solutions of Egs. (22) are

solutions of the set (23). For this purpose, we substitute
¢; = fi(x) for Eqs. (23). As a result, we obtain the set
of equations

d? 9 (X) + x3] 9x d
dt? TL:« [f’( ) = o 8th:] ~ @

Ai(x) + xi)

- (x) + x5l Oxx | _
+Z[fJX o op) O
i=1,...,N. (24)

Let us show that the relations
O dxs L Ox;
tZZfJX——J_ dt +ij(x)8—(p::0’
J

i=1,...

take place under the assumption of the validity of (22).
Using (13) and (22), we have

aXJ _ Ax; d*fi(x) | ,dfi(x) d Ox;
t2 Zf’ —;[a@ az T g dt 0¢;

2 ; 2¢ (c
+ 550 3 22| = 3 s T

dt? 8p; dez ’
(26)
dx: _ Ox: dpi | Oxi dpi
dt _zj: [a¢j dt T By, dt
d? f;(x) \ Oxi
- [ P50 4 0 32 (27)
As m;; = mj; and —‘XP% = B‘:g‘% = %L, i,j=1,...,N,

then, (25) follows from (26) and (27).
It follows from (24) and (25) that the functions A;()
satisfy the equations

dt2 Z [ff a@] T dt

2 ox] _ o
+Z[f,x o Bp | =% =Ll (28)

when the solutions of Eqs. (22) are solutions of (23). It
follows from (18) and (25) that Eqgs. (28) hold when the

phenomenological laws are linear.

Set (28) is only a necessary condition for the existence
of the transition from the conditional probability den-
sity function p(I'}),¢,; () ¢,) to the probability density
function p(I'(¢)). It follows from (6) and (21) that the
equality

F(¢min) = 2 (29)

must hold under the assumption of the validity of (22).

We need to know the specific form of the function
F = F(¢min) for further calculations. In this work, we
consider the case of the linear function

1

F(¢min) = 5

(Pmin) = 5

where 3 is some coefficient. It follows from (21) that
B > 0. In the linear case, according to (10), 5 = 4.

¢min, (30)

V. DEFINING THE FORM
OF THE PHENOMENOLOGICAL EQUATIONS

Under the assumption of the validity of Egs. (22), it
follows from (29) and (30) that

1

E¢min =z (31)

or, if the definition of @i, is taken into consideration,

% /_ :o Cdt = L :O sdt. (32)

Differentiating both sides of (32) and using (12), (13),

(18), and (22), we obtain

_ 2200 +xalfix) (33)
> xifi(%)

For relations (28) and (33) to hold we need to make
some assumptions of the forms of the functions A;(x),
i = 1,...,N. Our analysis shows that the simpliest
and sufficiently general assumption is that these func-
tions satisfy the relations generalizing (18):

A,()Z) = aXi, i=1,...,N, (34)
where o # 0 is a constant that does not depend on i.
The validity of (28) follows directly from (34) and (25).
We obtain from (34) and (33) that

B =2(c+1). (35)

In the case of the linear phenomenological equations, a =
1 and hence 8 = 4, which coincides with the Onsager-
Machlup result.

Substituting (34) in (16), we obtain the extended OM
function in the form

L(p,%X) = Z [¢:i9:(P) + axifi(x) +

i

(@ + 1)xi¢i] - (36)
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By a similar substitution in (19), we obtain the following
equations for f;(x):

>0 - ),

Oxr

k=1,...,N. (37

7

It follows from the definition of dissipative function
(15) and relations (17) and (34) that

9 (p) N . 99,(®)
- = 9@ + D bi—pr
00 |s—fx - 0p;
P=1x) 7 ¢=Ff(x)
=xi + Ai(x) = (¢ + )x.
Then, using (36), we have
L3, %) p=fy=2(@+1) D x:fi(%)
6 2.
ST+ I
i Pi 1o=F(x)

Equalities (34) and (38) allow us to write relation (33) in
the form

> 9y ()

g = 29(@) (39)

i ¢=Ff(x) ¢=F(x)
Let us assume that the function () satisfies the equa-
tion

L OY(p) _ B -
; == 40
S g = @) (40)
at all values of ¢ and not only at ¢ = f(%), as in (39).
Equation (40) is the Euler equation for the homogeneous
function (@) of degree % By virtue of (15), for the
function (%) to be homogeneous, it is sufficient to re-

quire that 8 > 2 and all functions g;(¢) are homoge-
neous functions of degree gp_%gl It follows from this that
all functions f;(x) are homogeneous functions of degree

(73%2'5’ i.e., they satisfy the Euler equation

Ofk(X 2 .
ZXiakTic) = mfk(x),

i

k=1,...,N. (41)

The right-hand sides of Egs. (41) and (37) are equal.
We equate the left-hand sides and obtain

S xi (%@_M) —0, k=1,...,N. (42)

Ixk I

i
Thus the homogeneous functions f;(x) must satisfy rela-
tions (42).

Let us consider then a class of the homogeneous func-

tions f;(x) satisfying the conditions that are stronger
than (42):

9fi(x) _ 0fx(%)
Oxk oxi

Conditions (43) are equivalent to the fact that there ex-
ists a potential of the thermodynamic forces V = V(%)

, i,k=1,...,N. (43)
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such as

fix) = 50,

i=1,...,N. (44)

Let us consider the case, which is most important for
practical applications, when all functions f;(x) are ho-
mogeneous polynomials of odd degree. In this case, there
necessarily exists a potential V() that is a homogeneous
polynomial of even degree, accurate to a constant.

For example, at N = 2, the functions f;(x1,Xx2) are
homogeneous polynomials of x; and x2 of odd degree
and

2 4n
L o1 = a=1,2,... . (45
52 n or 3 —] n (45)
Then V(x1,Xx2) can be written in the form
1 2n—1
V(xux2) = 5-Luxd™ + Y LizaXi™ X3
=1
1 2n

+%L2n2nxz ’ (46)

where L; 2, are constant coefficients. It follows from (44)
that

2n—1
filxasx2) = Lux3™ t + Z (2n —1)L; 2nX$n—P1X§v
=1
2n—1 .
folx,x2) = Y (20— ) Lizaxi" X5 + Lan2nx3™
=1

In particular, when n =1,

1 1
Vixiixz2) = §L11XE + Liax1xz + §L22X§, (47)

we have linear phenomenological equations, and

f1(x1,x2) = Luix1 + Li2x2,
fa(x1,x2) = Li2x1 + L22xa2,

where the Onsager reciprocity relations have already
been taken into account.

VI. CONCLUSION AND SUMMARY

We showed that the variational aspects of the Onsager-
Machlup theory can be extended to systems in which
non-Gaussian fluctuations take place and irreversible pro-
cesses are described by nonlinear phenomenological equa-
tions. We used a geometric approach and constructed
the extended OM function as a difference between the
dissipative function and the function whose graph is a
tangent to the graph of the dissipative function at the
point ¢ = —F(%)-

Using the extended OM function, we constructed the
functional, the minimum value of which determines the
probability of fluctuations of the thermodynamic vari-
ables in the neighborhood of the equilibrium state. The
generalized Euler-Lagrange equations follow from the
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condition of the minimum of this functional. The solu-
tions of these equations determine the conditional prob-
ability density function of fluctuations of the thermody-
namic variables. As the conditional probability density
function must conform to formula (6), then the solutions
of the equations ¢ = f(x) must also be solutions of
the generalized Euler-Lagrange equations. This condi-
tion leads to Egs. (28) for the functions A; = A;(X).

We considered the conditional probability density
function, which depends on the parameter 8 > 2, and
the functions A;(x) (34), which depend on the parame-
ter @ > 0, where 3 and « are connected by the relation

4195

B = 2(a + 1). In this case, the functions f;(x) are of a
class of homogeneous functions of degree (TE—ET and obey

relation (42). Then, we considered a more restricted class
of the potential functions f;(), which are connected by
relations (43). The specific case of the potential functions
are homogeneous polynomials of odd degree. In this case,
the coefficient 3 takes the discrete values (45): 4, %, 1z
In particular, if we consider homogeneous polyno-
mials of the first degree, i.e., linear functions f;(x), then
B = 4, which leads us to conditional probability density
function (10), obtained by Onsager and Machlup.
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